Statistical performance indicators
statistical-performance-indicators.Rd
These functions are provided for convenient calculation of modelling the listed model quality objectives performance indicators. All functions work on numeric R vectors, containing modelled or measured concentrations at a single sampling point, or averaged modelled or measured concentrations across multiple sampling points.
Bias (
vec_bias()
)Root Mean Square Error (
vec_rmse()
)Maximum Accepted Measurement Uncertainty (
scalar_uncer()
)Root Mean Square Uncertainty (
vec_rmsu()
)Pearson's Correlation coefficient (
vec_cor()
)Standard Deviation (
vec_sd()
)Centred Root Mean Square Error (
vec_crmse()
)MQI (
vec_mqi()
)
Usage
vec_bias(obs, mod, na.rm = FALSE)
vec_rmse(obs, mod, na.rm = FALSE)
scalar_uncer(obs, term, params = mqo_params(), na.rm = FALSE)
vec_rmsu(obs, term, params = mqo_params(), na.rm = TRUE)
vec_cor(obs, mod, na.rm = FALSE)
vec_sd(x, term, na.rm = FALSE)
vec_crmse(obs, mod, na.rm = FALSE)
vec_mqi(obs, mod, term, params = mqo_params(), na.rm = FALSE)
Arguments
- obs, mod, x
A numeric vector of observed (measured) concentrations (
obs
), modelled concentrations (mod
), or either of the previous depending on desired output (x
).- na.rm
a logical evaluating to
TRUE
orFALSE
indicating whetherNA
values should be stripped before the computation proceeds.- term
Either
"short"
or"long"
, identifying whetherdata
represents Short- or Long-term data.- params
A set of
mqor
parameters, most simply constructed usingmqo_params()
. Seemqo_params()
for more information about how parameter sets can be constructed.
Value
All vec_
functions return a single numeric value. scalar_
functions return a numeric vector the same length as obs
or mod
.
See also
Other model performance indicators:
summarise_mqo_stats()
,
vec_pi_bias()